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Exact formulae are derived for the reflected and refracted waves which occur for the inclined incidence of a 
plane horizontally polarized transverse wave of arbitrary protie on a horizontal interface between twu elastic 
half-spaces experiencing non-linear friction when they move with respect to one another. A smooth function 
of general form is adopted as the friction function, which depends on the diierence between the horizontal 
velocities of the elements of the boundaries of the half-spaces considered. It is shown that if the friction 
function depends non-monotonically on the relative velocity of displacement of the sides of a slit, then even 
when the profile of the incident wave is smooth, the reflected and refracted waves may contain strong 
discontinuities. 

A somewhat similar problem was solved in [l, 21 for the case of pi~~~ns~t friction with possible slippage; 
particular attention was devoted to the case when the incident wave is a rectangular pulse. 

Suppose the space nyt consists of two half-spaces: z > 0 (medium 1 with shear modulus u1 and density pr) and 

z < 0 (medium 2 with shear modulus uz and density ~2). 
We will consider only plane horizontally polarized transverse waves (SH-waves). Without loss of generality we 

will assume that the vectors of the normals to the wave fronts of ah the propagating waves lie in the xz plane; 
consequently, only the y-component of the displacement is non-zero. 

We recall the following well-known relation between the stresses and displacements u = (0, I(, 0) in a plane SH- 
wave propagating in a linearly elastic medium with shear modulus p 

We wiU assume that the half-spaces z > 0 and z < 0 experience non-linear friction with horizontal slippage with 

respect to one another. In other words, we will assume that the friction forces FL, acting on unit area of the 
boundary surface of the half-space z 7 0 has the form 

Fir =(O,-F(a(u+ -u-)/i+t),O); u* =u[r_o* (2) 

were F is an arbitrary smooth monotonically increasing function such that F(0) = 0. We will denote the friction 

force on unit area of the boundary surface of the half-space z < 0 by F& By Newton’s third law we have 

F; = -I$, (3) 

It is clear that the condition for the sum of the forces acting on an infinitely thin element of medium 1 adjo~~g 

the boundary z = 0 to be zero has the form ayz + (F& = 0, whence, by virtue of (1) and (2), we have 

~la~~a&o+- F(a(u+ -u-)/a) (4) 

A simik condition for medium 2 is 

~2auIaz~,,,_- F(d(u+ -u-)/at) (5) 
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FinaUy, we write the incident U-Z-wave of displacements uin = (0, uin, 0) in the form 

Hem h = WI.%)‘~ is the velocity of shear waves in medium s (S = 1, 2), j is the acute angle between the 

direction of propagation of the wave and the z axis, andf(Q is an arbitrary smooth function equal to zero when 

5 < 0. The problem is to determine the reflected and refracted waves from (4)-(6). Tb fix our ideas we wiU confine 

ourseIves to the case when 

PI ’ $2 (7) 

(Condition (7) includes the possibility of total internal reflection in (4)-(d).) 
It is clear that in thii problem only they-component in the reflected and refracted waves will be non-zero, i.e. 

We will seek u& and U’ in the form 

* . 
uEf “cp t- ( -x cosj 

@I 
--z, z>o 

f-4 1 (8) 

where k is the acute angle between the direction of propagation of the wave and the z axis, not known in advance. 
In order to determine the unknown functions cp and v we used boundary conditions (4) and (5) where, when 

z = 0+ we must put u = uin + u”, and when z = 0 we must put u = u*. 
Thus, from (4) we have 

and from (5) we have the similar relation 

It is obvious that for (10) and (11) to be satisfied identicaily, for all t and x we must have 

pi’ sin j = 82’ sink (12) 

By virtue of (7), equality (12) defines a real value of the angIe k, 0 s k < ru’2 for all j, 0 s c ~82. 
Now, taking (12) into account, we can write (10) and (11) in the form of the foIIowing system 

[f ‘(5) - Cp’(BlP~Si’ cosi - Of ‘(5) + rp’(S) - V’(5)) 

1v’C$)lr2B;’ cask - Q-‘(E)+ cp’(S) -w’(E)) 
(13) 

which co&&s two unknown functions cp’ and 4. Note, however, that system (13) can be reduced to a single 
functional equation in a single unknown function. In fact, subtracting the first equation of (13) from the second 
and substituting the result into the first equation of (13) we obtain an equation for cp’ 
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K - id32 ~sjl(cI2Bi cask) 

Since 1 + K > 0, cL#i’ cos j > 0, the right-hand side of (14) is a strictly increasing continuous function of (p’ (for 

any continuous monotonically increasing function F). Consequently, Eq. (14) can be solved uniquely for cp’, where 

(p’(5) is a continuous function (simultaneously withflt)). We will denote the corresponding function by 

CP’G) - W’(E)) (13 

Obviously, we must put 

since in the region where the incident wave has not travelled the displacement can be assumed to be zero. We 

then have from (16) and (13) 

(17) 

The function ~(6) de6ned by (15) is obviously also continuous. Formulae (16) and (17) are the required 
solution of the problem in question. 

Note. Suppose the functionflQ is non-zero only when 0 < 5 c A; A > 0. Then, if the function F is not identical 
with a linear function in any part, we have, generally speaking 

Hence, on the ray [A, -) we have q@,) i cp(A) and ~(5) E v(A) = - K(pcA) (see (17)). Hence, the quantities cp(A) 
and y(A) are residual constant displacements of the half-spaces z > 0 and z < 0, which occur after the incident 
wave has passed through. 

The case when the function F is non-monotonic is also of interest. We will introduce the notation g(e) = 
#)[l - K] + cp’(Q[l + K]. Then (14) can be rewritten in the form 

WV3 - w(S) + m(f)) (19) 

The right-hand side of (19) can obviously be both a monotonic and a non-monotonic function of&) depending 
on the behaviour of the function F. If the function F is such that the right-hand side of (19) is monotonic (as a 
function of g(Q), then it is obvious that all the conclusions reached above hold. 

Suppose now that the right-hand side of (19) is a non-monotonic function ifg(Q. Then if the range of values of 
fle) is sufficiently large (i.e. the profile of the incident wave is sufficiently sharp), then for certain 5, Eq. (19) will 

have a single solution. In addition, it is geometrically obvious that in this situation every unique branch g(e) of 
the solution of Eq. (19) is inevitably discontinuous. The functions (p’(e) and u/(c) will thereby also be discontinu- 

ous, i.e. the reflected and refracted waves of displacements imply discontinuitks of the first derivatives. 
Hence, in the case of a non-monotonic friction function, non-linear reflection and refraction at the interface 

between two linear media may be the mechanism by which discontinuities arise in wave problems. 

Note that the problem of strong discontinuities in the friction function does not necessarily imply the formation 
of strong discontinuities in the reflected and refracted waves. For example, if F(g) = k sign g, k > 0, then for a 
continuous functionfle) there is obviously a continuous solution g(t) of (19) since the right-hand side of (19) is a 
monotonic function of g. Hence, the mechanism that gives rise to discontinuities of the reflected and refracted 
waves is, in fact, the non-monotonic form of the friction function and not the presence of strong discontinuities 
in it. It is also easy to see that the discontinuities that arise due to the non-monotonic form of the friction function 
are stable with respect to small changes of this function and also with respect to small changes in the profile of 
the incident wave. Note, finally, that the non-monotonic form of the friction function leads, under certain 
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conditions, to the occurrence of self-excited oscillations in certain related problems in geophysics [3]. 
The method proposed in this paper can be extended to the case of horizontally stratified media, when each of 

the strata is uniform, isotropic and linearly elastic and experiences non-linear friction when there is horizontal 

displacement with respect to a nei~~~g layer. 
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